
Prof. Dr. Claudia Müller-Birn
Institute for Computer Science, Networked Information Systems

Distributed objects and
components

Netzprogrammierung
(Algorithmen und Programmierung V)

2

Descriptive models for distributed system design

Architectural model

Our topics last week

Claudia Müller-Birn, Netzprogrammierung 2011/12

Physical
model

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Inter-process communication

Remote
invocation

Indirect
communication

Processes

Objects

Components

Web Services

TCP
sockets

UDP
sockets

Multi-
cast

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Architectural patterns

Vertical distribution Horizontal distribution

Interaction
model

Multi-tier Thin/Fat Client

Interaction
model

Failure
model

Security
model

3

Our topics today
•  Distributed objects - emergence, key features, examples

•  Another example for distributed objects CORBA 2.0 (besides Java RMI)
•  Idea behind CORBA and why it failed

•  Problems with object-oriented middleware

•  Development of distributed components
•  Idea behind components

•  Example for distributed components: Enterprise JavaBeans

Claudia Müller-Birn, Netzprogrammierung 2011/12

4

Introduction
Distributed objects and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

5

Benefits of distributed object middleware
The encapsulation inherent in object-based solutions is well suited to distributed
programming.

The related property of data abstraction provides a clean separation between the
specification of an object and its implementation, allowing programmers to deal solely
in terms of interfaces and not be concerned with implementation details such as
programming language and operating system used.

This approach also lends itself to more dynamic and extensible solutions, for
example by enabling the introduction of new objects or the replacement of one object
with another (compatible) object.

Claudia Müller-Birn, Netzprogrammierung 2011/12

6

Key features of distributed objects
Distributed objects and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

7

The natural evolution of distributed objects
In distributed systems, earlier middleware was based on the client-server
model and there was a desire for more sophisticated programming
abstractions.

In programming languages, earlier work in object-oriented languages
such as Smalltalk led to the emergence of more mainstream and heavily
used programming languages such as Java and C++ (languages used
extensively in distributed systems).

In software engineering, significant progress was made in the
development of object-oriented design methods, leading to the
emergence of the Unified Modeling Language (UML) as an industrial-
standard notation for specifying (potentially distributed) object-oriented
software systems.

Claudia Müller-Birn, Netzprogrammierung 2011/12

8

Distributed object middleware
It provides a programming abstraction based on the object-oriented principles.

Leading examples: Java RMI and CORBA

Claudia Müller-Birn, Netzprogrammierung 2011/12

Java RMI CORBA

Restricted to the
Java-based development

Multi-language solution
allowing objects

written in a variety of languages to interoperate
(bindings exist for example for C++, Java, Python)

9

CORBA 2.0
Distributed objects and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

10

OMG and CORBA
The Object Management Group (OMG) was formed in 1989 to develop, adopt, and
promote standards for the development and deployment of applications in distributed
heterogeneous environments. Todays it is focused on modeling (programs, systems
and business processes) and model-based standards.

The OMG defined a Object Management Architecture (OMA) with one of its key
components - the Common Object Request Broker Architecture (CORBA)
specification.

Claudia Müller-Birn, Netzprogrammierung 2011/12

Object Request Broker (ORB) helps a client
to invoke a method on an object.

11

Main components of CORBA 2.0
•  An interface definition language known as IDL

•  An architecture

•  An external data representation, called CDR

•  A standard form for remote object references

Claudia Müller-Birn, Netzprogrammierung 2011/12

12

CORBA’s architecture
CORBA 2.0

Claudia Müller-Birn, Netzprogrammierung 2011/12

13

Main components of the CORBA architecture

Claudia Müller-Birn, Netzprogrammierung 2011/12

client
server

proxy

implementation
 repository object

adapter

ORB ORB

skeleton

client
 program

interface
 repository

Request

Reply
core core for A

Servant
 A

14

The object request broker (ORB)
All requests are managed by the ORB. This means that every invocation (whether it
is local or remote) of a CORBA object is passed to an ORB.

In the case of a remote invocation the invocation passed from the ORB of the client
to the ORB of the object implementation

The ORB is responsible for all the mechanisms required to perform these tasks:
•  Find the object implementation for the request.
•  Prepare the object implementation to receive the request.
•  Communicate the data making up the request.

Claudia Müller-Birn, Netzprogrammierung 2011/12

15

Object adapter
The role of the object adapter is to bridge the gap between CORBA objects with IDL
interfaces and the programming language interfaces of the corresponding servant
classes.

An object adapter has the following tasks
•  It creates remote object references for CORBA objects
•  It dispatches each RMI via skeleton to the appropriate servant
•  It activates and deactivates servants

Claudia Müller-Birn, Netzprogrammierung 2011/12

16

Implementation and interface repository
Implementation repository
•  Is responsible for activating registered servers on demand and for locating servers

that are currently running.
•  It stores a mapping from the names of object adapters to the pathnames of files

containing object implementations.

Interface repository
•  Provides information about registered IDL interfaces to clients and servers that

require it. Interfaces can be added to the interface repository service.
•  Using the IR, a client should be able to locate an object that is unknown at compile

time, find information about its interface, then build a request to be forwarded
through the ORB.

Claudia Müller-Birn, Netzprogrammierung 2011/12

17

CORBA IDL
CORBA 2.0

Claudia Müller-Birn, Netzprogrammierung 2011/12

18

CORBA’s object model
CORBA’s object model is very similar to the already known remote method
invocation.

In CORBA clients must not necessarily be objects but can be any program that sends
request messages to remote objects and receives replies.

CORBA objects refer to remote objects and such a object implements an IDL
interface, has a remote object reference and it is able to respond to invocations of
methods in its IDL interface.

Claudia Müller-Birn, Netzprogrammierung 2011/12

19

IDL interfaces Shape and ShapeList

Claudia Müller-Birn, Netzprogrammierung 2011/12

struct Rectangle{
 long width;
 long height;
 long x;
 long y;

} ;

struct GraphicalObject {
 string type;
 Rectangle enclosing;
 boolean isFilled;

};

interface Shape {
 long getVersion() ;
 GraphicalObject getAllState() ; // returns state of the GraphicalObject

};

typedef sequence <Shape, 100> All;
interface ShapeList {

 exception FullException{ };
 Shape newShape(in GraphicalObject g) raises (FullException);
 All allShapes(); // returns sequence of remote object references
 long getVersion() ;

};

20

Interface Definition Language (IDL)
Specification language

Language independent interface
Declare interfaces to object methods
IDL maps to many high-level programming languages

Design paradigm
Code to interface specified in the IDL regardless of implementation

Many OMG standard mappings, such as C, C++, Java, Python, Smalltalk, Ada

Claudia Müller-Birn, Netzprogrammierung 2011/12

21

CORBA today
CORBA 2.0

Claudia Müller-Birn, Netzprogrammierung 2011/12

22

Today, CORBA is used mostly�
to wire together components that run inside
companies’ networks, where
communication is protected from the
outside world by a firewall.

It is also used for real-time and embedded
systems development, a sector in which
CORBA is actually growing.

Overall, however, CORBA’s use is in decline
and it cannot be called anything but a niche
technology now.

(Henning, 2008)

23

?

(Henning, 2008)

24

Some but by far not all reasons
Technical issues
•  Many of CORBA’s APIs are far larger than necessary. For example, CORBA’s

object adapter requires more than 200 lines of code interface definitions, even
though the same functionality can be provided in 30 lines

•  CORBA’s unencrypted traffic conflicts with the reality of corporate security policies.

Procedural issues
•  There are no entry of qualifications to participate in the standardization process.
•  RFPs often call for a technology that is unproven.
•  Vendors respond to RFPs even when they have known technical flaws.
•  Vendors have a conflict of interest when it comes to standardization.

Claudia Müller-Birn, Netzprogrammierung 2011/12

25

Distributed components
Distributed objects and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

26

Issues with object-oriented middleware
Implicit dependencies
•  Internal (encapsulated) behavior of the object is hidden, e.g. an object may

communicate with other objects or may use other services
Ø  Not only a clear interface definition is needed but also the dependencies the object

has on other objects in the distributed configuration.

Interaction with the middleware
•  Programmers is exposed to many relatively low-level details associated with the

middleware architecture - need to further simplifications
Ø  Clean separation of concern is needed between code related to operation in a

middleware framework and code associated with the application.

Claudia Müller-Birn, Netzprogrammierung 2011/12

27

Issues with object-oriented middleware (cont.)
Lack of separation of distribution concerns
•  Programmers have to explicitly deal with non-functional concerns related to issues

such as security, coordination, and replication
Ø  The complexities of dealing with the distributed system services should be hidden

wherever possible from the programmer.

No support for deployment
•  Technologies such as Java RMI and CORBA does not support for the deployment

of the developed arbitrary distributed configurations
Ø  Middleware platforms should provide intrinsic support for deployment so that

distributed software can be installed and deployed in the same way as software for
a single machine.

Claudia Müller-Birn, Netzprogrammierung 2011/12

28

Essence of components

A component is specified in terms of a contract, which includes
•  A set of provided interfaces – that is, interfaces that the component offers as

services to other components
•  A set of required interfaces – that is, the dependencies that this component has in

terms of other components that must be present and connected to this
components for it to function correctly.

Claudia Müller-Birn, Netzprogrammierung 2011/12

A software component is a unit of composition with contractually
specified interfaces and explicit content decencies only.

29

Example software architecture of a simple file
system

Claudia Müller-Birn, Netzprogrammierung 2011/12

Directory service

File service

Flat file service

Block module Device module
Required interface

Provided interface

30

What is component-based development?
Programming in component-based systems is concerned with the development of
components and their composition.

Goal
•  Support a style of software development that parallels hardware development in

using off-the-shelf components and composing them together to develop more
sophisticated services

It supports third-party development of software components and also make it easier
to adapt system configurations at runtime, by replacing one component with another.

Claudia Müller-Birn, Netzprogrammierung 2011/12

31

Components and distributed systems
Distributed objects and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

32

Containers
Containers support a common pattern often encountered in distributed systems
development

It consists of:
•  A front-end (web-based) client
•  A container holding one or more components that implement the application or

business logic
•  System services that manage the associated data in persistence storage

Tasks of a container
•  Provides a managed server-side hosting environment for components
•  Provides the necessary separation of concerns that means the components deal

with the application concerns and the container deals with the distributed systems
and middleware issues

Claudia Müller-Birn, Netzprogrammierung 2011/12

33

The structure of a container

Claudia Müller-Birn, Netzprogrammierung 2011/12

34

Application servers

Claudia Müller-Birn, Netzprogrammierung 2011/12

35

Enterprise JavaBeans
Distributed objects and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

36

Multi-tiered Java EE applications

Claudia Müller-Birn, Netzprogrammierung 2011/12

37 Umesh Bellur

EJB Architecture

38

Enterprise beans
The Enterprise JavaBeans architecture is a component architecture for the
development and deployment of component-based distributed business applications.

Example: In an inventory control application, the enterprise beans might implement
the business logic in methods called checkInventoryLevel and orderProduct.

Benefits of Enterprise Beans
•  EJB container provides system-level services to enterprise beans, the bean

developer can concentrate on solving business problems.
•  Client developer can focus on the presentation of the client.
•  Application assembler can build new applications from existing beans.

Claudia Müller-Birn, Netzprogrammierung 2011/12

39

When shall I use enterprise beans?
•  The application must be scalable. To accommodate a growing number of users,

you may need to distribute an application’s components across multiple machines.
Not only can the enterprise beans of an application run on different machines, but
also their location will remain transparent to the clients.

•  Transactions must ensure data integrity. Enterprise beans support transactions,
the mechanisms that manage the concurrent access of shared objects.

•  The application will have a variety of clients. With only a few lines of code, remote
clients can easily locate enterprise beans. These clients can be thin, various, and
numerous.

Claudia Müller-Birn, Netzprogrammierung 2011/12

40

Types of EJBs
Session Bean: EJB used for implementing high-level business logic and processes
•  Session beans handle complex tasks that require interaction with other

components (entities, web services, messaging, etc.)

Timer Service
•  EJB used for scheduling tasks

Message Driven Bean
•  EJB used to integrate withe external services via asynchronous messages using

JMS. Usually, delegate business logic to session beans

Claudia Müller-Birn, Netzprogrammierung 2011/12

41

EJB containers
EJB container
•  Runtime environment that provides services, such as transaction management,

concurrency control, pooling, and security authorization.
•  Historically, application servers have added other features such as clustering, load

balancing, and failover.

Some JEE Application Servers
•  GlassFish (Sun/Oracle, open source edition)
•  WebSphere (IBM)
•  WebLogic (Oracle)
•  JBoss (Apache)
•  WebObjects (Apple)

Claudia Müller-Birn, Netzprogrammierung 2011/12

42

Summary
Distributed objects and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

43

So, what have we learned today?
•  Be happy, this lecture is not part of the examination.

Claudia Müller-Birn, Netzprogrammierung 2011/12

44

References
George Coulouris, Jean Dollimore, Tim Kindberg: Distributed Systems: Concepts and
Design. 5th edition, Addison Wesley, 2011.

Michi Henning. 2008. The rise and fall of CORBA. Commun. ACM 51, 8 (August 2008),
52-57. DOI=10.1145/1378704.1378718 http://doi.acm.org/10.1145/1378704.1378718

Claudia Müller-Birn, Netzprogrammierung 2011/12

