
Prof. Dr. Claudia Müller-Birn 
Institute for Computer Science, Networked Information Systems 

Distributed object 
component middleware I - 
Java RMI 
Nov 15th, 2011 
Netzprogrammierung 
(Algorithmen und Programmierung V) 
 
 

2 

Descriptive models for distributed system design 

Architectural model 

Our topics last week 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

Physical 
model 

Architectural elements 

Communicating  
entities 

Communication paradigm Roles and res- 
ponsibilities 

Placement 

Inter-process communication 

Remote  
invocation 

Indirect  
communication 

Processes 

Objects 

Components 

Web Services 

TCP  
sockets 

UDP  
sockets 

Multi- 
cast 

Architectural  
styles 

Client-server 

Peer-to-peer 

Multiple server 

Proxy/Cache 

Mobile code 

Architectural patterns 

Vertical distribution Horizontal distribution 

Interaction 
model 

Multi-tier  Thin/Fat Client 

Interaction 
model 

Failure 
model 

Security 
model 



6 

Our topics today 
Implementation of RMI 
•  The process of remote method invocation 
•  Communication modules and remote reference module 
•  RMI software 
Generation of classes for proxies, dispatcher and skeleton 
Dynamic invocation: An alternative to proxies 
Distributed garbage collection algorithm  
 
Java RMI  
•  Introducing a case study 
•  Parameter and result passing and RMI registry 
•  Building a client and server programs 
 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

7 

Implementation of RMI 
Distributed object component middleware I - Java RMI 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



8 

The process of remote method invocation 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

client 

object A 
proxy  
for B 

server 

remote 
object B 

   Skeleton &    
   dispatcher  
   for B’s class 
 

remote reference  
module 

communication 
module 

remote reference  
module 

request 

reply 

servant 

9 

What does the communication module do? 
Two cooperating communication modules carry out the request-reply 
protocol. 
 
Content of request and reply messages 
 
 
 
 
Communication modules provide together a specified invocation semantics.  
 
The communication module in the server selects the dispatcher for the class 
of the object to be invoked, passing on the remote object’s local reference. 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

messageType 

requestId 

remoteReference 



10 

Remote reference module 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

client 

object A 
proxy  
for B 

server 

remote 
object B 

   Skeleton &    
   dispatcher  
   for B’s class 
 

remote reference  
module 

communication 
module 

remote reference  
module 

request 

reply 

servant 

11 

What does the remote reference module do? 
It is responsible for translating between local and remote object references 
and for creating remote object references.  
 
The remote reference module holds a (remote object) table that records the 
correspondence between local object references in that process and remote 
object references (which are system-wide). 
 
Table includes 
•  An entry for all remote objects held by the process 
•  An entry for each local proxy 

 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



12 

Remote reference module/servant 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

client 

object A 
proxy  
for B 

server 

remote 
object B 

   Skeleton &    
   dispatcher  
   for B’s class 
 

remote reference  
module 

communication 
module 

remote reference  
module 

request 

reply 

servant 

13 

RMI software 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

client 

object A 
proxy  
for B 

server 

remote 
object B 

   Skeleton &    
   dispatcher  
   for B’s class 
 

remote reference  
module 

communication 
module 

remote reference  
module 

request 

reply 

servant 

 Skeleton &    
   dispatcher  

   for B’s class 



15 

Generation of classes for  
proxies, dispatcher and skeleton 
Classes for proxies, dispatcher and skeleton are generated automatically by 
an interface compiler. 
 
In Java RMI 
•  Set of methods offered by a remote object is defined as a Java interface 

that is implemented within the class of the remote object 
•  Java RMI compiler generates the proxy, dispatcher and skeleton classes 

from the class remote object  

Claudia Müller-Birn, Netzprogrammierung 2011/12 

16 

Dynamic invocation: An alternative to proxies 
Dynamic invocation gives the client access to a generic representation of a 
remote invocation. 
 
In order to make a dynamic invocation not only information (e.g., name) 
about the interface of the remote object are included in the remote object 
reference. Additionally the names of the methods and the types of the 
argument are required. 
 
When is it useful? 
 
In applications, where some of the interfaces of the remote objects cannot 
be predicted at design time. 
 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



17 

Server and client programs 
Server program 
•  Contains classes for the dispatcher and skeletons, together with the 

implementations of the classes of all of the servants 
•  Contains a initialization section (responsible for creating and initializing at 

least one of the servants to be hosted by the server) 
•  Generally allocates a separate thread for the execution of each remote 

invocation -> designer of the remote object implementation must allow 
concurrent executions 

Client program 
•  Contain the classes of the proxies for all of the remote objects that it will 

invoke 
•  Require a means of obtaining a remote object reference for at least one 

of the remote objects held by the server -> binder 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

18 

Factory methods 
Servants are created either in the initialization section or in methods in a 
remote interface designed for that purpose 
 
Factory method: used to refer to a method that creates servants 
 
Factory object: object with factory methods 
 
 
 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



19 

Activation of remote objects 
A remote object is described as active when it is available for invocation from 
a running process, whereas it is called passive if it is not currently active but 
can be made active. 
 
Activation consists of creating an active object from the corresponding 
passive object by creating a new instance of its class and initialize its 
instance variables from the store state. 
 
Activator is responsible for 
•  Registering passive objects that are available for activation 
•  Starting names server processes and activating remote objects in them 
•  Keeping track of the locations of the servers for remote objects that it has 

already activated 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

20 

Distributed garbage collection 
Implementation of RMI 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



21 

Java distributed garbage collection algorithm  

Claudia Müller-Birn, Netzprogrammierung 2011/12 

client 

object A 
proxy  
for B 

server 

remote 
object B 

   Skeleton &    
   dispatcher  
   for B’s class 
 

remote reference  
module 

communication 
module 

remote reference  
module 

request 

reply 

servant 

22 

Client C server 

Java distributed garbage collection algorithm 
(cont.) 
Each server process contains a set of names of the processes hold remote 
object references for each of its remote objects.  

Claudia Müller-Birn, Netzprogrammierung 2011/12 

b.holder 

addRef(B) 

removeRef(B) 

b.holder{C} b.holder 



23 

Java RMI 
Distributed object component middleware I - Java RMI 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

24 

Case study: shared whiteboard 

Claudia Müller-Birn, Netzprogrammierung 2011/12 
http://www.flickr.com/photos/36567420@N06/ 



25 

Java Remote interfaces Shape and ShapeList 

import java.rmi.*; 
import java.util.Vector; 
 
public interface Shape extends Remote { 

 int getVersion() throws RemoteException; 
 GraphicalObject  getAllState() throws RemoteException; 

} 
 
public interface ShapeList extends Remote { 

 Shape newShape(GraphicalObject g) throws RemoteException;   
 Vector allShapes() throws RemoteException; 
 int getVersion() throws RemoteException; 

} 

26 

Parameter and result passing 
In Java RMI, the parameters of a method are assumed to be input 
parameters and the result of a method is a single output parameter. Any 
object that is serializable can be passed as an argument or results in Java 
RMI. 
 
Passing remote objects 
When the type of a parameter or result value is defined as a remote 
interface, the corresponding argument or result is always passed as a 
remote object reference. 

Passing non-remote objects 
All serializable non-remote objects are copied and passed by value. When a 
object is passed by value a new object is created in the receiver’s process.  
 
 Claudia Müller-Birn, Netzprogrammierung 2011/12 



27 

Downloading classes 
As you know, non-remote objects are passed by value and remote objects 
are passed by reference as arguments and results of RMI’s. 
 
!  If the recipient does not already posses the class of an object  

 passed by value, its code is downloaded automatically. 
 
!  If the recipient of the remote object reference does not already 

 posses the class for a proxy, its code is downloaded automatically. 
 
Advantages: 
1.  There is no need for every user to keep the same set of classes in their 

working environment. 
2.  Both client and server programs can male transparent use of instances 

of new classes whenever they added.  
Claudia Müller-Birn, Netzprogrammierung 2011/12 

28 

RMIregistry 
The RMIregistry is the binder for Java RMI.  
 
It maintains table mapping textual, URL-styled names to references to 
remote objects hosted on that computer.  
 
It is accessed by methods of the Naming class, whose methods take as an 
argument a URL-formatted string of the form: 

  //computerName:port/objectName 
 
 
 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



29 

The Naming class of Java RMIregistry 
void rebind (String name, Remote obj)  
     This method is used by a server to register the identifier of a remote object by name.  
 
void bind (String name, Remote obj)  
    This method can alternatively be used by a server to register a remote object by name,  
    but if the name is already bound to a remote object reference an exception is thrown. 
 
void unbind (String name, Remote obj)  
    This method removes a binding. 
 
Remote lookup(String name)  
    This method is used by clients to look up a remote object by name. A remote object  
     reference is returned. 
 
String [] list()  
    This method returns an array of Strings containing the names bound in the registry. 

30 

RMIregistry (cont.) 
It is possible to set up a system-wide binding service. 
 
How? 
 
•  An instance of the RMI registry must run in the networked environment 
•  The class LocateRegistry (in java.rmi.registry) must be used to discover 

this registry 
•  Contains a getRegistry method that returns an object of type Registry 

representing the remote binding service: 
 
public static Registry getRegistry() throws RemoteException 

  
•  After discovery it is necessary to issue a call of rebind on this returned 

Registry object to establish a connection with the remote RMIregistry 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



31 

Building a client and server programs 
Java RMI 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

32 

Server program 
The server is a whiteboard server which 
 
•  represents each shape as a remote object instantiated by a servant that 

implements the Shape interface 
•  holds the state of a graphical object as well as its version number 

•  represents its collection of shapes by using another servant that 
implements the ShapeList interface  

•  holds a collection of shapes in a Vector 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



33 

Java class ShapeListServer with main method 

import java.rmi.*; 
import java.rmi.server.UnicastRemoteObject; 
 
public class ShapeListServer{ 

 public static void main(String args[]){ 
  System.setSecurityManager(new RMISecurityManager()); 
   try{ 
   ShapeList aShapeList = new ShapeListServant(); 
   ShapeList stub =  
      (ShapeList) UnicastRemoteObject.exportObject(aShapeList,0); 
   Naming.rebind(”//bruno.ShapeList", stub);     
   System.out.println("ShapeList server ready"); 

          }catch(Exception e) { 
   System.out.println("ShapeList server main " + e.getMessage());} 
 } 

} 

34 

Java class ShapeListServant  
implements interface ShapeList 
import java.util.Vector; 
 
public class ShapeListServant implements ShapeList { 

  private Vector theList;    // contains the list of Shapes    
     private int version; 

 public ShapeListServant() {...} 
 public Shape newShape(GraphicalObject g) {   
   version++; 

         Shape s = new ShapeServant( g, version);     
          theList.addElement(s);                 
          return s; 

 } 
 public  Vector allShapes() {...} 

  public int getVersion() { ... } 
} 



35 

Java client of ShapeList 
import java.rmi.*; 
import java.rmi.server.*; 
import java.util.Vector; 
 
public class ShapeListClient{ 
    public static void main(String args[]){ 

  System.setSecurityManager(new RMISecurityManager()); 
  ShapeList aShapeList = null; 
  try{ 
   aShapeList  = (ShapeList) Naming.lookup("//bruno.ShapeList”); 
   Vector sList = aShapeList.allShapes();     
  } catch(RemoteException e) {System.out.println(e.getMessage()); 
  }catch(Exception e) {System.out.println("Client: " + e.getMessage());} 

    } 
} 

36 

Callbacks 
The clients creates a remote object that implements an interface that 
contains a method for the server to call. We refer to this as a callback object.  
 
The server provides an operation allowing interested clients to inform it of 
the remote object references of their callback objects. It records these in a 
list. 
 
Whenever an event of interest occurs, the server calls the interested clients.  
 
Disadvantages 
1.  The performance of the server may be degraded by constant polling. 
2.  Clients cannot notify users of updates in a timely manner. 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



37 

Summary 
Remote method invocation   

Claudia Müller-Birn, Netzprogrammierung 2011/12 

38 

We have we learned? 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



39 

Distributed object component middleware II 
(Java RMI) 

Next class 

Claudia Müller-Birn, Netzprogrammierung 2011/12 

40 

References   
Main resource for this lecture: 
George Coulouris, Jean Dollimore, Tim Kindberg: Distributed Systems: 
Concepts and Design. 5th edition, Addison Wesley, 2011 
 
 
 
 
 
 
 

Claudia Müller-Birn, Netzprogrammierung 2011/12 


