
Prof. Dr. Claudia Müller-Birn
Institute for Computer Science, Networked Information Systems

Ad hoc network
programming

Nov 1st, 2011
Netzprogrammierung
(Algorithmen und Programmierung V)

2

Descriptive models for distributed system design

Architectural model

Our topics last week

Claudia Müller-Birn, Netzprogrammierung 2011/12

Physical
model

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Inter-process communication

Remote
invocation

Indirect
communication

Processes

Objects

Components

Web Services

TCP
sockets

UDP
sockets

Multi-
cast

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Architectural patterns

Interaction
model

Vertical distribution Horizontal distribution
Multi-tier Thin/Fat Client

Interaction
model

Failure
model

Security
model

3 Claudia Müller-Birn, Netzprogrammierung 2011/12

Our topics today
Internet Protocols, esp. TCP/IP layer

API for Internet protocols, esp. sockets vs. ports

UDP datagram communication

TCP stream communication

External data representation

Multicast communication

4

Internet protocols
Ad hoc network programming

Claudia Müller-Birn, Netzprogrammierung 2011/12

5

Protocols
Protocol refers to a set of rules and formats to be used for communication
between processes in order to perform a given task.

Claudia Müller-Birn, Netzprogrammierung 2011/12

Specification of the format of the
data in the messages.

Specification of the sequence of
messages that must be

exchanged.

6

Conceptual layering of protocol software

Claudia Müller-Birn, Netzprogrammierung 2011/12

Layer n

Layer 2

Layer 1

Message sent Message received

Communication
medium

Sender Recipient

8

Review: Protocol layers in the ISO Open
Systems Interconnection (OSI) model

Claudia Müller-Birn, Netzprogrammierung 2011/12

Application

Transport

Physical

Message sent Message received

Sender Recipient

Network

Data link

Presentation

Session

Communication medium

9

Encapsulation as it is applied in layered
protocols

Claudia Müller-Birn, Netzprogrammierung 2011/12

Application-layer
message

Presentation
header

Session
header

Transport
header

Network
header

10

TCP/IP layer

Claudia Müller-Birn, Netzprogrammierung 2011/12

Messages (UDP) or Streams (TCP)

Application

Transport

Internet

UDP or TCP packets

IP datagrams

Network-specific frames

Message
Layers

Underlying network

Network interface

11

IPv4 addressing
Objective: schemes for naming and addressing hosts and for routing IP
packets to their destinations.

Defined scheme assigns an IP address to each host in the Internet
•  Network identifier – uniquely identifies the sub-network in the internet
•  Host identifier - uniquely identifies the host’s connection

32-bit, written in a 4 Bytes
in decimal notation,
e.g. 130.149.27.12

 Claudia Müller-Birn, Netzprogrammierung 2011/12

7 24

Class A: 0 Network ID Host ID

14 16

Class B: 1 0 Network ID Host ID

21 8

Class C: 1 1 0 Network ID Host ID

28

Class D (multicast): 1 1 1 0 Multicast address

27

Class E (reserved): 1 1 1 1 unused0

12

Java API: package java.net
Java provides class InetAddress that represents Internet addresses

•  Method static InetAddress getByName(String host)!
•  Can throw an UnknownHostException

•  Example

 w3c = InetAddress.getByName(“www.w3c.org”);  
!me = InetAddress.getByName(“localhost”); !

!
!System.out.println(InetAddress.getByName
!("localhost"));!
! !localhost/127.0.0.1!
!System.out.println(InetAddress.getLocalHost());!
! !lounge.mi.fu-berlin.de/160.45.42.83!

Robert Tolksdorf und Peter Löhr

http://download.oracle.com/javase/6/docs/api/java/net/InetAddress.html

13

API for Internet protocols

Claudia Müller-Birn, Netzprogrammierung 2011/12

14

Middleware layers

Claudia Müller-Birn, Netzprogrammierung 2011/12

Applications, services

Remote invocation, indirect communication

Underlying inter-process communication primitives:
Sockets, message passing, multicast support

UDP and TCP

Middleware
layers

15

Characteristics of inter-process communication

Claudia Müller-Birn, Netzprogrammierung 2011/12

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Synchronous communication: sending and receiving processes synchronize
at every message = send and receive are blocking operation

Asynchronous communication: send and receive operations are non-blocking

16

Sockets
Interprocess communication consists of transmitting a message between a
message between a socket in one process and a socket in another process

Claudia Müller-Birn, Netzprogrammierung 2011/12

message

agreed port any port socket socket

Internet address = 138.37.88.249 Internet address = 138.37.94.248

other ports
client server

17

Socket address = IP address and port number

Sockets
•  Sockets provide an interface for

programming networks at the
transport layer.

•  Network communication using
Sockets is very much similar to
performing file I/O

•  Socket-based communication is
programming language
independent.

Ports
•  Port is represented by a positive

(16-bit) integer value

•  Some ports have been reserved to
support common/well known
services such as ftp (20 for data
and 21 control)

•  User level process/services
generally use port number value
>= 1024

Claudia Müller-Birn, Netzprogrammierung 2011/12

18

Realizing process-to-process communication

UDP features
•  UDP datagram encapsulated

inside an IP package
•  Header includes source and

destination port numbers
•  No guarantee of delivery
•  Message size is limited
•  Restricted to applications and

services that do not require
reliable delivery of single or
multiple messages

TCP features
•  Provides reliable delivery of

arbitrarily long sequences of bytes
via stream-based programming
abstraction

•  Connection-oriented service
•  Before data is transferred, a

bidirectional communication
channel is established

Claudia Müller-Birn, Netzprogrammierung 2011/12

19

UDP datagram communication

Claudia Müller-Birn, Netzprogrammierung 2011/12

20

UDP Sockets

Robert Tolksdorf und Peter Löhr

bind 1. Client creates socket bound
to a local port

bind 2. Server binds its socket to a
server port

4. Ports and sockets are closed
close close

3. Client/Server send and receive
datagrams send receive

21

Issues related to datagram communication
Message size
•  Receiving process needs to specify an array of bytes of a particular size

in which to receive a message
•  If the received message is to big it is truncated

Datagram communication is carried out with a non-blocking send and a
blocking receive operation

Timeouts can be set, in order to avoid that the receive operation waits
indefinitely

Receive method does not specify an origin of the messages. But it is
possible to connect a datagram socket to a particular remote port and
Internet address.
 Claudia Müller-Birn, Netzprogrammierung 2011/12

22

Failure model of UDP datagrams
Integrity
•  Messages should not be corrupted or duplicated
•  Use of checksum reduces probability that received message is corrupted

Failures
•  Omission failures: messages maybe dropped occasionally because of

checksum error or no buffer space is available at source/destination
•  Ordering: Messages can sometimes be delivered out of order

Claudia Müller-Birn, Netzprogrammierung 2011/12

23

Using UDP for applications
Advantage of UDP datagrams is that they do not suffer from overheads
associated with guaranteed message delivery

Example 1: Domain Name System
•  DNS primarily uses UDP on port number 53 to serve requests
•  DNS queries consist of a single UDP request from the client followed by a

single UDP reply from the server

Example 2: VOIP
•  No reason to re-transmit packets with bad speech data
•  Speech data must be processed at the same rate as it is sent - there is no

time to retransmit packets with errors

Claudia Müller-Birn, Netzprogrammierung 2011/12

24

Java API for UDP diagrams
UDP datagram communication

Claudia Müller-Birn, Netzprogrammierung 2011/12

25

Java API for UDP diagrams
Datagram communication is provided by two classes
DatagramPacket and DatagramSocket!
!
DatagramPacket!
•  Constructor that makes an instance out of an array of bytes comprising a

message
•  Constructor for use when receiving a message, message can be retrieved

by the method getData!

DatagramSocket!
•  Constructor that takes port number as argument for use by processes
•  No-argument constructor for choosing a free local port

Claudia Müller-Birn, Netzprogrammierung 2011/12

26

Example: Java client (UDP)
import java.io.*;
import java.net.*;
class UDPClient {

 public static void main(String args []) throws Exception {

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress =
 InetAddress.getByName("hostname");

 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];
 String sentence = inFromUser.readLine();
 sendData = sentence.getBytes();

Claudia Müller-Birn, Netzprogrammierung 2011/12

Create input
stream

Create client
socket

Translate host-
name to IP

address using
DNS

27

Example: Java client (UDP) (cont.)
 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence = new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);

 clientSocket.close();
 }

}
Claudia Müller-Birn, Netzprogrammierung 2011/12

Create datagram with
data-to-send, length,

IP addr, port
Send datagram

to server

Read datagram
from server

28

Example: Java server (UDP)
import java.io.*;
import java.net.*;

 class UDPServer {
 public static void main(String args []) throws Exception
 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];
 byte[] sendData = new byte[1024];
 while(true) {
 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

Claudia Müller-Birn, Netzprogrammierung 2011/12

Create datagram socket
at port 9876

Create space for
new datagram

Receive datagram

29

Example: Java server (UDP) (cont.)
 String sentence = new String(receivePacket.getData());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length,
 IPAddress, port);

 serverSocket.send(sendPacket);
 }
 }

} Claudia Müller-Birn, Netzprogrammierung 2011/12

Get IP addr port #,
of sender

Create datagram
to send to client

Write out datagram
to socket End of while loop, loop back and wait for

another datagram

30

TCP stream communication

Claudia Müller-Birn, Netzprogrammierung 2011/12

31

Hiding network characteristics by TCP
Application can choose the message size, means how much data it writes
to a stream or reads from it.

TCP protocol uses an acknowledgement scheme to avoid lost data.

TCP supports flow control that means if the writer is too fast for the reader,
then the writer is blocked until the reader consumed sufficient data.

Message identifiers are used by each IP packet. The recipient can therefore
detect and reject duplicates or can reorder message if needed.

Before a pair of communication processes communicate they establish a
connection.

Claudia Müller-Birn, Netzprogrammierung 2011/12

32 Robert Tolksdorf und Peter Löhr

TCP Sockets
bind

accept connect

read/write

close

read/write

close

1. Server bind port

listen 2. Server is ready and listening

3. Server is waiting for request,
client sends request, server
accepts

4. Client and server are
connceted - bidirectional!

5. Connection is closed

33

Failure model of TCP
In order to realize reliable communication, TCP streams use checksums
to detect and reject corrupt packages and sequence numbers to detect and
reject duplicate packets.

To deal with lost packages TCP streams use timeouts and
retransmissions.

A broken connection has the following effects
•  The processes using the connection cannot distinguish between network

failure and failure of the process at the other end of the connection
•  The communication processes cannot tell whether the messages they

have sent recently have been received or not.

 Claudia Müller-Birn, Netzprogrammierung 2011/12

34

Use of TCP
Many frequently used services run over TCP connections with reserved port
numbers

•  HTTP [RFC 2068]: The Hypertext Transfer Protocol is used for

communication between web browser and web server.
•  FTP [RFC 959]: The File Transfer Protocol allows directories on a remote

computer t be browsed and files to be transferred from one computer to
another over a connection.

•  Telnet [RFC 854]: Telnet provides access by means of a terminal session
to a remote computer.

•  SMTP [RFC 821]: The Simple Mail Transfer Protocol is used to send mail
between computer.

 Claudia Müller-Birn, Netzprogrammierung 2011/12

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

35

The HTTP protocol
Suppose you enter the URL: http://www.inf.fu-berlin.de/groups/index.html

Claudia Müller-Birn, Netzprogrammierung 2011/12

1a)
http client initiates TCP connection to
http server (process) at
www.inf.fu-berlin.de;
Port 80 is default for http server

1b)
http server at host
www.inf.fu-berlin.de waiting for TCP
connection at port 80;
“accepts” connection, notifying client

2)
http client sends http request
message (containing URL) into TCP
connection socket

3)
http server receives request
message, forms response message
containing requested object
(someDepartment/home.index),
sends message into socket

tim
e

36

The HTTP protocol (cont.)

Claudia Müller-Birn, Netzprogrammierung 2011/12

4)
http server closes TCP connection

5)
http client receives response
message containing html file,
displays html. Parsing html file, finds
2 referenced jpeg objects

6)
steps 1-5 repeated for each jpeg
objects

tim
e

37

Java API for TCP
TCP stream communication

Claudia Müller-Birn, Netzprogrammierung 2011/12

38

Java API for TCP streams
Java interface provides two classes ServerSocket and Socket

ServerSocket
•  Class is intended to be used by server to create a socket at a server port

for listening for connect requests from clients.

Socket
•  Class is for use by a pair of processes with a connection
•  The client uses a constructor to create a socket, specifying the DNS

hostname and port of a server

Claudia Müller-Birn, Netzprogrammierung 2011/12

39

Example: Java client (TCP)
import java.io.*;
import java.net.*;

class TCPClient {

 public static void main(String argv[]) throws Exception {

 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser = new BufferedReader(new
 InputStreamReader(System.in));

 Socket clientSocket = new Socket ("hostname", 6789);

Claudia Müller-Birn, Netzprogrammierung 2011/12

Create a
input stream

Create client socket,
connect to server

40

Example: Java client (TCP) (cont.)
 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

 BufferedReader inFromServer =
 new BufferedReader(new InputStreamReader
 (clientSocket.getInputStream ()));

 sentence = inFromUser.readLine();
 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

Claudia Müller-Birn, Netzprogrammierung 2011/12

Create output stream
attached to socket

Create input stream
attached to socket

Send line to server

Read line from server

41

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv []) throws Exception {

 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {
 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient = new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

Claudia Müller-Birn, Netzprogrammierung 2011/12

Create welcoming
Socket at port 6789

Wait, on welcoming
Socket for contact

by client
Create input stream,

attached to socket

42

Example: Java server (TCP) (cont.)
 DataOutputStream outToClient = new DataOutputStream
 (connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes (capitalizedSentence);
 }
 }

}

Claudia Müller-Birn, Netzprogrammierung 2011/12

Create output stream,
attached to socket

Read in line
from socket

Write out line
to socket

End of while loop,
loop back and wait
for another client
connection

43

External data representation and
marshalling

Claudia Müller-Birn, Netzprogrammierung 2011/12

44

What is the challenge?
Messages consist of sequences of bytes.

Interoperability Problems
•  Big-endian, little-endian byte ordering
•  Floating point representation
•  Character encodings (ASCII, UTF-8, Unicode, EBCDIC)

So, we must either:
•  Have both sides agree on an external representation or
•  transmit in the sender’s format along with an indication of the format

used. The receiver converts to its form.

Claudia Müller-Birn, Netzprogrammierung 2011/12

46

External Data Representation and Marshalling
External data representation
An agreed standard for the representation of data structures and primitive
values

Marshalling
The process of taking a collection of data
items and assembling them into a form
suitable for transmission in a message

Unmarshalling
Is the process of disassembling them on arrival into an equivalent
representation at the destination

Claudia Müller-Birn, Netzprogrammierung 2011/12

http://www.breti.org/tech/files/b400feb80f01f69e5cafca5160be5d65-67.html

47

Approaches for external data representation
CORBA’s common data representation
•  Concerned with an external representation for the structured and primitive

types that can be passed as the arguments and results of remote
invocation in CORBA.

Java’s object serialization
•  Refers to the activity of flattening an object or even a connected set of

objects that need to be transmitted or stored on a disk

XML
•  Defines a textual format for representing structured data

Protocol buffer
JSON
Claudia Müller-Birn, Netzprogrammierung 2011/12

48

Google Protocol Buffer
Protocol Buffer (PB) is a common serialization format for Google

Google adopts a minimal and efficient remote invocation service

The goal of Protocol Buffer is to provide a language- and platform-neutral
way to specify and serialize data such that:
•  Serialization process is efficient, extensible and simple to use
•  Serialized data can be stored or transmitted over the network

More information here:
http://code.google.com/apis/protocolbuffers/docs/overview.html

Claudia Müller-Birn, Netzprogrammierung 2011/12

52

Comparison of Protocol Buffer Language
Advantages of Protocol Buffer (PB)
•  PB is 3-10 times smaller than an XML
•  PB is 10-100 times faster than an XML

Can we compare PB with XML?
•  PB works only on Google infrastructure, which is relatively closed system

and does not address inter-operability
•  XML is richer (it specifies self-describing data and meta-data). PB is not

so rich. There are accessory programs that can create a full description.
However, they are hardly used.

53

Multicast communication

Claudia Müller-Birn, Netzprogrammierung 2011/12

54 Robert Tolksdorf und Peter Löhr

Possiblities to communicate
Connection-oriented 1:1
TCP

Connectionless 1:1
UDP

Connectionless 1:n
Multicast

55

Multicast messages
Multicast message provide a useful infrastructure for constructing distributed
systems with the following characteristics

•  Fault tolerance based on replicated services

•  Discovering services in spontaneous networking

•  Better performance through replicated data

•  Propagation of event notifications

Claudia Müller-Birn, Netzprogrammierung 2011/12

56 Robert Tolksdorf und Peter Löhr

Multicast Sockets
1. Participants bind socket

2. Participants join group

3. Particpants receive
messages from sender

4. Partcipants leave group and
release socket

bind

224.x.x.x

bind
bind

bind
bind

joingroup

bind
bind send /
receive

bind
bind

224.x.x.x

leavegroup /
close

57

IP Multicast
Is built on top of the Internet Protocol (IP) and allow the sender to transmit a
single IP packet to a set of computers that form a multicast group.

Multicast group is specified by a Class D Internet Address. Every IP
datagram whose destination address starts with "1110" is an IP Multicast
datagram.

IP packets can be multicast on a local and wider network. In order to limit the
distance of operation, the sender can specify the number of routers that can
be passed (i.e. time to live, or TTL)

Multicast addresses can be permanent (e.g. 224.0.1.1 is reserved for the
Network Time Protocol (NTP))

Robert Tolksdorf und Peter Löhr

58

Java API: java.net.MulticastSocket

public class MulticastSocket extends DatagramSocket {
public MulticastSocket()...
public MulticastSocket(int port)...

 // create socket and select port number explicitely or implicitely
public void setTimeToLive(int ttl) ...

 // define Time to Live – default is 1 !
public void joinGroup(InetAddress!mcastaddr) throws ...

// join group under the address mcastaddr
public void leaveGroup(InetAddress mcastaddr) throws ...

// leave group
}

Please note: send, receive, ... are inherited from class DatagramSocket

Robert Tolksdorf und Peter Löhr

59

Descriptive models for distributed system design

Architectural model

Our topics last week

Claudia Müller-Birn, Netzprogrammierung 2011/12

Physical
model

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Inter-process communication

Remote
invocation

Indirect
communication

Processes

Objects

Components

Web Services

TCP
sockets

UDP
sockets

Multi-
cast

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Architectural patterns

Vertical distribution Horizontal distribution

Interaction
model

Multi-tier Thin/Fat Client

Interaction
model

Failure
model

Security
model

60

Summary
•  TCP/IP layer
•  Characteristics of inter-process communication
•  Sockets vs. ports
•  UDP datagram communication

•  Characteristics, failure model, usage
•  Java API for UDP diagrams

•  TCP stream communication
•  Characteristics, failure model, usage
•  Java API for TCP streams

•  Approaches for external data representation (marshalling)
•  Multicast communication

Claudia Müller-Birn, Netzprogrammierung 2011/12

61

Structured communication (RCP)
Next class

Claudia Müller-Birn, Netzprogrammierung 2011/12

62

References
Main resource for this lecture:
George Coulouris, Jean Dollimore, Tim Kindberg: Distributed Systems:
Concepts and Design. 5th edition, Addison Wesley, 2011

Claudia Müller-Birn, Netzprogrammierung 2011/12

