
Prof. Dr. Claudia Müller-Birn
Institute for Computer Science, Networked Information Systems

Architecture
of distributed systems

Oct 25, 2011
Netzprogrammierung
(Algorithmen und Programmierung V)

3 net programming, winter term 2011/2012

Our topics today
Physical model

Architectural model
•  Architectural elements

•  Communication paradigms
•  Roles and responsibilities
•  Placement

•  Architectural patterns

Fundamental model
•  Interaction model
•  Failure model
•  Security model

4

Descriptive models for distributed system design
Physical model
•  Most explicit description of a system
•  Capture hardware composition in terms of computers and their interconnecting

networks

Architectural model
•  Describes a systems in terms of computational and communication tasks

performed by computational elements

Fundamental model
•  Abstract perspective in order to study the individual aspects of a system
•  Three models are introduced: interaction model, failure model, and the security

model

Robert Tolksdorf und Peter Löhr

5

Difficulties for and threats to distributed systems
Widely varying mode of use
•  Component parts of the system are subject to wide variations in workload, e.g.,

some web pages are accessed several million times a day
•  Some parts of the systems might be disconnected or poorly connected, e.g.

mobile computers
•  Some applications have special requirements such as high communication

bandwidth and low latency, e.g. multimedia applications

Wide range of system environments
•  Distributed systems accommodate heterogeneous hardware, operating systems,

networks
•  Networks may differ widely in performance (wireless network vs. LAN)

External threats
•  Attack of data integrity, denial of service

net programming, winter term 2011/2012

6

Physical model

Claudia Müller-Birn, Netzprogrammierung 2011/12

7

Introduction physical model
A physical model is a representation of the underlying hardware elements of a
distributed system that abstracts from specific details of the computer and networking
technologies employed.

Baseline physical model
•  Hardware and software components located at networked computers

communicate and coordinate their actions only by passing messages
•  Very simple physical model of a distributed system

Claudia Müller-Birn, Netzprogrammierung 2011/12

8

Three generations of distributed systems
Early distributed systems
•  Emerged in the late 1970s and early 1980s because of the usage of local area

networking technologies
•  System typically consisted of 10 to 100 nodes connected by a LAN, with limited

Internet connectivity and supported services (e.g., shared local printer, file servers)

Internet-scale distributed systems
•  Emerged in the 1990s because of the growth of the Internet

Claudia Müller-Birn, Netzprogrammierung 2011/12

9

Physical model of the internet-scale
distributed system

Claudia Müller-Birn, Netzprogrammierung 2011/12

intranet

ISP

desktop computer:

backbone

satellite link

server:

☎

network link:

☎

☎

☎

10

Three generations of distributed systems
Early distributed systems
•  Emerged in the late 1970s and early 1980s because of the usage of local area

networking technologies
•  System typically consisted of 10 to 100 nodes connected by a LAN, with limited

Internet connectivity and supported services (e.g., shared local printer, file servers)

Internet-scale distributed systems
•  Emerged in the 1990s because of the growth of the Internet
•  Infrastructure became global

Contemporary distributed systems
•  Emergence of mobile computing leads to nodes that are location-independent
•  Need to added capabilities such as service discovery and support for spontaneous

interoperation
•  Emergence of cloud computing and ubiquitous computing
 Claudia Müller-Birn, Netzprogrammierung 2011/12

11

Distributed system of systems
Emergence of ultra-large-scale (ULS) distributed systems

Complex systems consisting of a series of subsystems that are
systems in their own right and that come together to perform
particular task or tasks

Example: environmental management system for flood prediction
•  Consists of sensor networks deployed to monitor the state of various

environmental parameters
•  Coupled with systems that predict the like hood for floods (running complex

simulations)
•  Additionally early warning systems to key stakeholders via mobile phones

Claudia Müller-Birn, Netzprogrammierung 2011/12

http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf

12

Generations of distributed systems

Claudia Müller-Birn, Netzprogrammierung 2011/12

13

Architectural models

Claudia Müller-Birn, Netzprogrammierung 2011/12

14

Architectural model
An architectural model of a distributed system simplifies and abstracts the functions
of the individual components of a distributed system and

•  Organization of components across the network of computers
•  Their interrelationship, i.e., communicate with each other

net programming, winter term 2011/2012

15

Architectural elements

Claudia Müller-Birn, Netzprogrammierung 2011/12

What are the entities that are communicating in the distributed system?

How do they communicate, or, more specifically, what communication
paradigm is used?

What (potentially changing) roles and responsibilities do they have in the overall
architecture?

How are they mapped on the physical distributed infrastructure
(what is their placement)?

16

Communicating entities
Architectural elements

Claudia Müller-Birn, Netzprogrammierung 2011/12

17

System-oriented perspective
In distributed systems the entities that communicate are typically processes.

Exceptions:
•  In primitive environments such as sensor networks, operating systems does not

provide any abstractions, therefore nodes communicate
•  In most environments processes are supplemented by threads, so threads are

more the endpoints of communications

Claudia Müller-Birn, Netzprogrammierung 2011/12

18

Problem-oriented perspective
Objects
•  Computation consists of a number of interacting objects representing units of

decomposition for the problem domain
•  Objects are accessed via interfaces

Components
•  Resemble objects in that they offer problem-oriented abstractions, also accessed

via interfaces
•  Specify not only their interfaces but also the assumptions they make in terms of

other components/interfaces that must be present for a component to fulfil its
function

Web services
•  Software application which is identified via URI
•  Supports direct interactions with other software agents

Claudia Müller-Birn, Netzprogrammierung 2011/12

19

Communication paradigms
Architectural elements

Claudia Müller-Birn, Netzprogrammierung 2011/12

20

Types of communication paradigms

Claudia Müller-Birn, Netzprogrammierung 2011/12

Interprocess communication

Remote invocation

Indirect communication

21

Interprocess communication
•  Low-level support for communication between processes in distributed systems

including message parsing-primitives

•  Direct access to the API offered by Internet protocols (socket programming) and
support for multicast communication

Claudia Müller-Birn, Netzprogrammierung 2011/12

22

Remote invocation
Covering a range of techniques based on a two-way exchange between
communicating entities

Resulting in the calling of a remote operation, procedure or method

•  Request-reply protocols: more a pattern imposed on an underlying message-
parsing service to support client-server computing

•  Remote procedure calls: procedures in processes on remote computers can be
called as if they are procedures in the local address space

•  Remote method invocation: a calling object can invoke a method in a remote
object

Claudia Müller-Birn, Netzprogrammierung 2011/12

23

Remote invocation
Covering a range of techniques based on a two-way exchange between
communicating entities

Resulting in the calling of a remote operation, procedure or method

•  Request-reply protocols: more a pattern imposed on an underlying message-
parsing service to support client-server computing

•  Remote procedure calls: procedures in processes on remote computers can be
called as if they are procedures in the local address space

•  Remote method invocation: a calling object can invoke a method in a remote
object

Claudia Müller-Birn, Netzprogrammierung 2011/12

•  Communication represent a two-way relationship
between sender and receiver

•  Sender explicitly directing messages/invocations
to the associated receivers

•  Receivers are aware of senders

•  Must exist at the same time

24

Remote invocation
Covering a range of techniques based on a two-way exchange between
communicating entities

Resulting in the calling of a remote operation, procedure or method

•  Request-reply protocols: more a pattern imposed on an underlying message-
parsing service to support client-server computing

•  Remote procedure calls: procedures in processes on remote computers can be
called as if they are procedures in the local address space

•  Remote method invocation: a calling object can invoke a method in a remote
object

Claudia Müller-Birn, Netzprogrammierung 2011/12

•  Sender do not need to know who they are
sending to (space uncoupling)

•  Senders and receivers do not need to exist in the
same time (time uncoupling)

25

Indirect communication
Group communication
•  Delivery of messages to a set of recipients
•  Abstraction of a group which is represented in the system by a group identifier
•  Recipients elect to receive message send to a group a joining a group

Publish-subscribe-systems
•  A large number of producers (publisher) distribute information items of interest

(events) to a similarly large number of consumers (subscribers)

Message queues
•  Message queues offer a point-to-point service whereby producer processes can

send messages to a specified queue and consumer processes can receive
messages from the queue or being notified

 Claudia Müller-Birn, Netzprogrammierung 2011/12

26

Group communication

net programming, winter term 2011/2012

Two kinds of group communication:
•  Broadcast (message sent to everyone)
•  Multicast (message sent to specific group)

Used for:
•  Replication of services
•  Replication of data
•  Service discovery
•  Event notification

27

Publish-subscribe-systems
(or event-based communication)
•  Communication through propagation of events
•  Generally associated with publish/subscribe systems
•  Sender process publishes events
•  Receiver process subscribes to events and receives only the ones it is interested

in

net programming, winter term 2011/2012

28

Architectural elements

Claudia Müller-Birn, Netzprogrammierung 2011/12

What are the entities that are communicating in the distributed system?

How do they communicate, or, more specifically, what communication
paradigm is used?

What (potentially changing) roles and responsibilities do they have in the overall
architecture?

How are they mapped on the physical distributed infrastructure
(what is their placement)?

✔
✔

29

Roles and responsibilities
Architectural elements

Claudia Müller-Birn, Netzprogrammierung 2011/12

30

Architectural styles

Claudia Müller-Birn, Netzprogrammierung 2011/12

client-server

peer-to-peer

31

Client-server
Roles and responsibilities

Claudia Müller-Birn, Netzprogrammierung 2011/12

32

Client-server

net programming, winter term 2011/2012

33

Clients invoke individual servers

Claudia Müller-Birn, Netzprogrammierung 2011/12

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

34

Fundamental issue with client-server
Client server offers a direct, relatively simple approach to the sharing of data and
other resources

➥ But it scales poorly

The centralization of service provision and management implied by placing a service
at a single address does not scale well beyond the capacity of the computer that
hosts the service and the bandwidth of its connections

Even though, there a several variations of the client-server architecture to respond to
this problem but none of the really solve it

There is a need to distribute shared resources much more widely in order to share
the computing and communication loads amongst a much larger number of
computers and network links

net programming, winter term 2011/2012

35

Peer-to-peer
Roles and responsibilities

Claudia Müller-Birn, Netzprogrammierung 2011/12

36

Peer-to-peer application
•  Is composed of a large number of peer processes

running on separate computers
•  All processes have client and server roles: servent
•  Patterns of communication between them depends

entirely on application requirements
•  Storage, processing and communication loads for

accessing objects are distributed across computers
and network links

•  Each object is replicated in several computers to
further distribute the load and to provide resilience
in the event of disconnection of individual
computers

•  Need to place and retrieve individual computers is
more complex then in client-server architecture

net programming, winter term 2011/2012

37

Architectural elements

Claudia Müller-Birn, Netzprogrammierung 2011/12

What are the entities that are communicating in the distributed system?

How do they communicate, or, more specifically, what communication
paradigm is used?

What (potentially changing) roles and responsibilities do they have in the overall
architecture?

How are they mapped on the physical distributed infrastructure
(what is their placement)?

✔
✔
✔

38

Placement
Architectural elements

Claudia Müller-Birn, Netzprogrammierung 2011/12

39

Services provided by multiple servers

net programming, winter term 2011/2012

Option 1
•  Servers partition a set of objects in which the

service is based and distribute them between
themselves

•  Example
•  In the Web in which each web server

manages it own set of resources
•  User can employ a browser to access a resource at any one of the servers

Option 2
•  Server maintain replicated copies of them on several hosts
•  Example:

•  NIS (Network Information Service) used by computers on a LAN

Server

Server

Server

Service

Client

Client

A service provided by multiple servers

40

Proxy server and caches
A cache is a store of recently used data objects that is closer to the objects
themselves. Caches might be co-located with each client or may be located in a
proxy server that can be shared by several clients.

Process
•  A new object is received at a computer > it is added to the cache store, replacing

some existing objects if necessary
•  Object is needed by the client process > caching service checks the checks the

cache for an up-to-date copy
•  If copy is not available this copy is fetched

Example?

net programming, winter term 2011/2012

Web proxy server

Client

Proxy

Web

server

Web

server

server
Client

41

Mobile code
A typical well-known and widely-used example for mobile code are applets.

Claudia Müller-Birn, Netzprogrammierung 2011/12

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code
Client

b) client interacts with the applet

42

Mobile agents
A mobile agent is a running program (both code and data) that travels from one
computer to another in a network carrying out a task on someone’s behalf, e.g.
collecting information.

Benefits agents provide for creating distributed systems (Lange & Oshima, 1999)
•  They reduce the network load.
•  They overcome network latency.
•  They encapsulate protocols.
•  They execute asynchronously and autonomously.
•  They adapt dynamically.
•  They are naturally heterogeneous.
•  They are robust and fault-tolerant.

Examples?

Claudia Müller-Birn, Netzprogrammierung 2011/12

43

Architectural elements

Claudia Müller-Birn, Netzprogrammierung 2011/12

What are the entities that are communicating in the distributed system?

How do they communicate, or, more specifically, what communication
paradigm is used?

What (potentially changing) roles and responsibilities do they have in the overall
architecture?

How are they mapped on the physical distributed infrastructure
(what is their placement)?

✔
✔
✔
✔

44

Architectural patterns
Architectural models

Claudia Müller-Birn, Netzprogrammierung 2011/12

45

Concept of layering
Vertical organization of services into a service layers

Distributed services can be provided by one or more server processes, interacting
with each other and with client processes in order to maintain a consistent system-
wide view of the service’s resources

Example
•  Network time service is implemented on the Internet based on the Network Time

Protocol (NTP) by server processes running on hosts throughout the Internet that
supply current time to any client that request it

net programming, winter term 2011/2012

46

Software and hardware service layers

net programming, winter term 2011/2012

Applications, services

Middleware

Operating system

Computer and network hardware

Platform

47

Platform

Titel, Datum

Lowest level hardware and software layers for distributed
systems and applications

Characteristics
•  provide services to the layers above them
•  implemented independently in each computer
•  Bringing the system’s programming interface up to a level that facilitates

communication and coordination between processes

Examples
x86/Windows, intel x86/Solaris, PowerPC/Mac OS X, Intel x86/Linux

Applications, services

Middleware

Operating system

Computer and network hardway

48

Middleware
Is a layer of software whose purpose is to mask hetero-
geneity and to provide a convenient programming model
to application programmers

is represented by processes or objects in a set of computers that interact with each
other to implement communication and resource-sharing support

Is concerned with providing useful building blocks for the construction of software
components that can work with one another

Limitations of middleware
•  Many distributed applications rely entirely on services provided by middleware to

support their needs for communication and data sharing
•  Example, application that is suited to the client-server model such a database of

names and addresses an rely on middleware that provides only remote method
invocation

net programming, winter term 2011/2012

Applications, services

Middleware

Operating system

Computer and network hardway

49

Vertical Distribution (Multi-Tier)
An extension of the client-server architecture

Distributes the traditional server functionality over multiple servers

net programming, winter term 2011/2012

50

Communication in a multi-tier system

net programming, winter term 2011/2012

51

Horizontal Distribution
Involves replicating a server’s functionality over multiple computers

Typical example: replicated Web server
•  Each server machine contains a complete copy of all hosted Web pages
•  Client requests are passed on to the servers in a round robin fashion

Is used to improve scalability
(by reducing the load on individual
servers) and reliability (by providing
redundancy)

net programming, winter term 2011/2012

52

Thin and fat client implementations
Decomposed a typical client-server application into three logical parts
•  the interface part
•  the application logic part, and
•  the data part

Thin client implementation
•  Provides a minimal user interface layer, and leave everything else to the server

Fat client implementation
•  Include all of the user interface and application logic in the client
•  Rely only on the server to store and provide access to data

Implementations in between will split up the interface or application logic parts over
the clients and server in different ways.

net programming, winter term 2011/2012

53

Fundamental models

Claudia Müller-Birn, Netzprogrammierung 2011/12

54

Requirements on the fundamental model
Questions that should be addressed by a system model
1.  What are the main entities of the system?
2.  How do they interact?
3.  What are the characteristics that affect their individual and collective behavior?

Aspects of distributed systems that are considered are

Claudia Müller-Birn, Netzprogrammierung 2011/12

Interaction

Failure

Security

55

Interaction model
Fundamental models

Claudia Müller-Birn, Netzprogrammierung 2011/12

56

Performance of communication channels
Latency
•  Delay between the start of a message’s transmission from one process and the

beginning of its receipt by another
•  It includes:

•  Time taken for the first string of bits transmitted through a network to reach its
destination

•  Delay in accessing the network
•  Time taken by the operating system communication services at both the

sending and the receiving processes
Bandwidth
•  total amount of information that can be transmitted over a computer network in a

given time.
Jitter
•  Variation in the time taken to deliver a series of messages.

 Claudia Müller-Birn, Netzprogrammierung 2011/12

57

Two variants of the interaction model

Synchronous distributed
systems

The following bounds are defined:

•  The time to execute each step of
a process has known lower and
upper bounds

•  Each message transmitted over
a channel is received within a
known bounded time.

•  Each process has a local clock
whose drift rate from real time
has known bound.

Asynchronous distributed
system

There are no bounds on:

•  Process execution speed

•  Message transmission delays

•  Clock drift rate

Claudia Müller-Birn, Netzprogrammierung 2011/12

58

Event ordering

Claudia Müller-Birn, Netzprogrammierung 2011/12

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1

59

Failure model
Fundamental models

Claudia Müller-Birn, Netzprogrammierung 2011/12

60

Introducing the failure model
The failure model defines ways in which failure may occur in order to provide an
understanding of the effects of failure.

Taxonomy of failures of processes and communication channels (Hadzilacos & Toueg, 1994)

•  Omission failures
•  Arbitrary failures
•  Timing failure

Claudia Müller-Birn, Netzprogrammierung 2011/12

61

Omission failures
Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other

processes may detect the state.
Crash Process Process halts and remains halted. Other

processes may not be able detect this state.
Omission Channel A message inserted in an outgoing message

buffer never arrives at the other end’s incoming
message buffer.

Send-omission Process A process completes a send operation but the
message is not put in its outgoing message
buffer.

Receive-omission Process A message is put in a process’s incoming
message buffer but that process does not
receive it.

Claudia Müller-Birn, Netzprogrammierung 2011/12

62

Processes and channels

Claudia Müller-Birn, Netzprogrammierung 2011/12

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

63

Arbitrary failures
Often called Byzantine failure.

This is the worst possible failure semantics, in which any type of error may occur.

Example of an arbitrary failure of a process
•  A process arbitrarily omits intended processes steps or takes unintended

processing steps

Example of an arbitrary failure of a communication channel
•  Message content may be corrupted, nonexistent messages may be delivered or

real messages may be delivered more than once
•  Solutions: checksum to detect corrupted messages and message sequence

numbers to detect nonexistent and duplicated messages

Claudia Müller-Birn, Netzprogrammierung 2011/12

64

Timing failures
Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

Claudia Müller-Birn, Netzprogrammierung 2011/12

65

Security model
Fundamental models

Claudia Müller-Birn, Netzprogrammierung 2011/12

66

Introducing the security model

Claudia Müller-Birn, Netzprogrammierung 2011/12

The security of a distributed system can be archived by securing the processes
and the channels used for their interactions and by protecting the objects that

they encapsulate against unauthorized access.

67

Protecting objects

Claudia Müller-Birn, Netzprogrammierung 2011/12

Network

invocation

result
Client

Server

Principal (user) Principal (server)

ObjectAccess rights

68

Securing processes and their interactions

Threats to processes
•  Without reliable knowledge a server

can not tell the principal’s identity
behind an invocation

•  The same applies to a client who
receives the result from an invocation
but it is not sure if this is from the
intended server

Threats to communication channels
•  An ‘enemy’ can copy, alter, or inject

messages as they travel across the
network -> Threat to privacy and
integrity of information

•  Another attack is saving copies of
messages and reply them later, e.g.
an invocation message requesting
transferring a sum of money from one
bank account to another

Claudia Müller-Birn, Netzprogrammierung 2011/12

Communication channel

Copy of m

Process p Process q m

The enemy
m’

69

Defeating security threads
Cryptography and shared secrets
•  Example

•  Pair of processes shares a secret and nobody other know this
•  By exchanging a message the pair of processes includes information that

proves the senders knowledge of this secret
•  Cryptography is based on an encryption algorithm that uses secret keys

Authentication
•  Providing the identities supplied by their senders
•  Basic technique: include in a message an encrypted portion that contains enough

of the contents of the message to guarantee its authentication

Encryption and authentication are used to build secure channels on top of existing
communication services.

Claudia Müller-Birn, Netzprogrammierung 2011/12

70

Summary
•  Three generations of distributed systems and the emergence of ultra-large-scale

(ULS) distributed systems
•  Types of communication paradigms:

•  Interprocess communication
•  Remote invocation
•  Indirect communication

•  Architectural styles: client-server and peer-to-peer
•  Vertical distribution (Multi-Tier) and horizontal distribution of c/s systems
•  Characteristics of synchronous distributed systems and asynchronous distributed

system
•  Omission failures, arbitrary failures, timing failure in distributed computing
•  Defeating security threads with encryption and authentication

Claudia Müller-Birn, Netzprogrammierung 2011/12

71

Ad hoc network programming
(communication over sockets)

Next class

Claudia Müller-Birn, Netzprogrammierung 2011/12

72

References
Main resource for this lecture:
George Coulouris, Jean Dollimore, Tim Kindberg: Distributed Systems: Concepts and
Design. 5th edition, Addison Wesley, 2011

Further readings
Danny B. Lange and Mitsuru Oshima. 1999. Seven good reasons for mobile agents.
Commun. ACM 42, 3 (March 1999), 88-89. DOI=10.1145/295685.298136

Vassos Hadzilacos and Sam Toueg. 1994. A Modular Approach to Fault-Tolerant
Broadcasts and Related Problems. Technical Report. Cornell University, Ithaca, NY,
USA.

 Claudia Müller-Birn, Netzprogrammierung 2011/12

